بررسی اثر تنش خشکی بر برخی خصوصیات مورفولوژیکی و فیزیولوژیکی کنجد (Sesamum indicum L.)

نوع مقاله : پژوهشی

نویسندگان

1 گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران؛ دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 گروه بیوفیزیک، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران ،ایران

چکیده

تنش خشکی در اکثر مناطق جهان مهم­ترین عامل کاهش عملکرد گیاهان زراعی محسوب می­شود. به منظور بررسی اثر تنش خشکی بر برخی صفات مورفولوژیک و فیزیولوژیک گیاه کنجد آزمایشی در قالب طرح کاملا تصادفی با سه تکرار اجرا شد. در این آزمایش اثر سطوح مختلف تنش خشکی (سطح آبیاری 5، 10، 15 و 25 درصد ظرفیت زراعی) بر میزان فعالیت آنزیم‌های آنتی‌اکسیدانی شامل: کاتالاز، پلی فنل اکسیداز، آسکوربات پراکسیداز، پراکسیداز، برخی رنگیزه‌های فتوسنتزی (کلروفیل a، کلروفیل b، کلروفیل کل و کاروتنوئیدها)، برخی تعدیل‌کننده‌های اسمزی شامل پرولین و همچنین برخی صفات مورفولوژیکی(تعداد برگ، طول ریشه، ارتفاع ساقه، ارتفاع بوته، طول برگ، عرض برگ، وزن خشک ریشه، وزن تر ریشه، وزن تر اندام هوایی، وزن خشک اندام هوایی، وزن تر بوته، وزن خشک بوته) بررسی شد. پس از کشت گیاه در گلدان، اعمال تنش خشکی (سطح آبیاری 5، 10، 15 و 25 درصد ظرفیت زراعی) در مرحله گیاهچه‌ای (چهار برگی) انجام گردید و سپس صفات مورد مطالعه اندازه‌گیری شد. نتایج تجزیه­ آماری نشان داد که تنش خشکی اثر معنی­داری در سطح یک درصد بر کلیه صفات فیزیولوژیکی و مورفولوژیکی داشت. با افزایش تنش خشکی (تا سطح  آبیاری 5 درصد ظرفیت زراعی) کاهش در صفات مورفولوژیکی و رنگیزه های فتوسنتزی نسبت به سطح شاهد بیشتر شد. با افزایش سطوح تنش خشکی افزایش طول ریشه در گیاه کنجد مشاهده شد، به طوری­که بیشترین طول ریشه مربوط به سطح آبیاری 5 درصد ظرفیت زراعی و کمترین طول ریشه مربوط به سطح کنترل (سطح آبیاری 25 درصد ظرفیت مزرعه) بود. بیشترین فعالیت آنزیم های آنتی اکسیدانی و پرولین در بیشترین تنش خشکی (سطح آبیاری 5 درصد ظرفیت زراعی) مشاهده گردید. لذا براساس نتایج حاصله پیشنهاد می­شود که میزان رشد گیاه در مراحل رشدی و نموی مختلف اندازه گیری و تأثیر تنش در هر دوره مشخص گردد تا تفسیر مناسبی از تأثیر تنش بر روی گیاه بدست آید.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of drought stress on morphological and physiological traits of sesame (Sesamum indicum L.)

نویسندگان [English]

  • Sahar momeni 1
  • leila fahmideh 2
  • Abbasali Emamjomeh 1
  • Mahmud Solouki 1
  • Javad Zahiri 3
1 Department of plant Breeding and Biotechnology, University of Zabol, Zabol, Iran
2 Department of Plant Breeding and Biotechnology, University of Zabol, Iran; Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Drought stress is the most important factor in decreasing crop yield in most parts of the world. In order to investigate the effect of drought stress on some morphological and physiological traits of sesame plant, an experiment was conducted in a randomized complete block design with three replications. In this experiment, the effects of different levels of drought stress (5%, 10%, 15%, and 25% field capacity) were investigated on the activity of antioxidant enzymes (catalase, polyphenol oxidase, ascorbate peroxidase, and peroxidase, some photosynthetic pigments (chlorophyll a, chlorophyll b, total chlorophyll, carotenoid), some osmotic regulators including proline, and some morphological parameters (number of leaves, root length, stem height, plant height, leaf length, leaf width, dry weight of root, fresh weight of root, fresh weight of shoots, dry weight of shoots, fresh weight of plant, and dry weight of plant). After planting in pots, drought stress (5%, 10%, 15% and 25% of field capacity) was applied at seedling (four-leaf) stage and then the desired traits were measured. Statistical analyses showed that drought stress had a significant effect on all physiological and morphological features at 1% level. Morphological traits and photosynthetic pigments decreased with increasing drought stress (irrigation up to 5% of field capacity). Increasing drought stress levels increased root length in sesame. The highest root length (3.375 cm) was related to 5% of field capacity irrigation and the lowest root length (2.5 cm) was related to control (25% of field capacity irrigation). The highest levels of antioxidant enzymes and proline were also observed at the highest levels of drought stress (5% of field capacity irrigation). Based on the findings, the plant's growth measurements are recommended to be carried out at various developmental stages to find the effects of stress at each stage  so as to get an appropriate understanding of the effects of stress on the plant.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • abiotic stress
  • Osmotic regulators
  • Photosynthetic pigments
  • Sesamum Indicum
Abdul Jaleel, C., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R. and Panneerselvam, R. (2007). Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids and surfaces B: Biointerfaces. 60(2): 201-206.
Aerts, R. and Chapin III, F.S. (1999). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In Advances in ecological research. pp. 1-67. ed. Academic Press.
Ahmed, C.B., Rouina, B.B., Sensoy, S., Boukhris, M. and Abdallah, F.B. (2009). Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environmental and Experimental Botany. 67(2): 345-352.
Ahmed, S., Nawata, E., Hosokawa, M., Domae, Y. and Sakuratani, T. (2002). Alterations in photosynthesis and some antioxidant enzymatic activities of mung bean subjected to water logging. Journal Plant Science. 163: 117-123.
Alexieva, V., Sergiev, I., Mapelli, S. and Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant. Cell and Environment. 24: 1337–1344.
Allahmoradi, P., Mansurifar, C., Saeidi, M. and Jalali Honarmand, S. (2013). Water deficiency and its effects on grain yield and some physiological traits during different growth stages in lentil (Lens culinaris L.) cultivars. Annals of Biological Research. 4(5): 139-145.
Amudha, J. and Balasubramani, G. (2010). Recent molecular advances to combat abiotic stress tolerance in crop plants. Biotechnology and Molecular Biology Review. 6 (2): 31-58.
Anjum, S.h.A., Xie, X.Y., Wang, L. Ch., Saleem, M.F., Man, Ch. and Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. Journal of Agricultural Research. 6(9):2026-2032.
Ariafar, S. and Sirousmehr, A.R. (2005). Effect of urban waste compost on yield, essential oil percentage and some physiological characteristics of Nigella sativa under drought stress. Journal of Agricultural Crops Production. 19(1): 31-42.
Ariano, S., Bartolomeo, D., Cristos, X. and Andras, M. (2005). Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes. Functional Plant Biology. 32(1): 45-53.
Askary, M., Behdani, M. A., Parsa, S., Mahmoodi, M. and Jamialahmadi, S. (2017). Effects of water stress and manure on stomatal conductance, relative water content, photosynthetic pigments and quantitative and qualitative yield of Thymus vulgaris L. and Thymus daenensis Celak. Iranian Journal of Medicinal and Aromatic Plants. 33(5): 793-811.
Aslani, Z., Hassani, A., Rasooli Sadaghiyani, Sefidkon, F. and Barin, M. (2011). Effect of two fungi species of arbuscular mycorrhizal (Glomus mosseae L. and Glomus intraradices L.) on growth, chlorophyll contents and P oncentration in Basil (Ocimum basilicum L.) under drought stress conditions. Iranian Medicinal and Aromatic Plants. 27: 471-486.
Babai, k., Amini deheghi, M., Modares sanavi, A. M. and Jabari, R. (2009). Effect Tension Drought on Traits Morphological, The Proline and Percent Thymol in Thyme (Thymus vulgarize L.). Journal - Research Plants Drug and Aromatic Iran. 26(2): 239-251.
Bates, S., Waldern, R. P. and Teare, E. D. (1973). Rapide determination of free proline for water stress studies. Plant and Soli. 39: 205-207.
Beers, G.R. and Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Biology Chemical. 195(1):133-140.
Bettaieb, I., Zakhama, N., Wannes, W.A., Kchouk, M.E. and Marzouk, B. (2009). Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Scientia Horticulturae. 120(2): 271-275.
 Blum, A., Gozlan, G. and Mayer, J. (1981). The Manifestation of Dehydration Avoidance in Wheat Breeding Germplasm 1. Crop Science. 21(4): 495-499.
Cabuslay, G.S., Ito, O. and Alejar, A.A. (2002). Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Science. 163(4): 815-827.
Chohura, P., Kolota, E. and Komosa, A. (2009). Effect of fertilization with Fe chelates on the state of iron nutrition of greenhouse tomato. Journal of Elementology. 14(4): 657-664.
Chopra, R. and Selote, D.S. (2007). Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than-susceptible wheat cultivar under field conditions. Environmental and Experimental Botany. 60(2): 276-283.
Christensen, J.H., Bauw, G., Welinder, K.G., Van Montagu, M. and Boerjan, W. (1998). Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant physiology. 118(1): 125-135.
Dehghan, D., Alizadeh, A., Esmaile, K. and Nemati, S.H. (2015). Root growth, Yield and Yield Components of Tomato under Drought Stress. Journal of Water Research in Agriculture. 29(2): 169-179.
Dere, S., Gunes,T. and Sivaci, R. (1998). Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany. 22(1): 13-18.
Esfandiari, E., Javadi, A., Shokrpour, M. and Shekari, F. (2011). The effect of salt stress on the antioxidant defense mechanisms on wheat seedling. Fresenius Environmental Bulletin. 20(8):2021-2036.
Fazeli, F., Ghorbanli, M. and Niknam, V. (2007). Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biologia Plantarum. 51(1): 98-103.
Food and Agriculture Organization of the United Nations. (2016). Statistics Division in FAO. From http://faostat3.fao.org/compar/E.
Gharbi, A., Rashid in, Tarynzhad, A. S. and Chlbyyany, Q. (2013). Salinity and drought tolerance of durum wheat lines under greenhouse conditions. Journal of Crop Ecophysiology. 4 (28): 393-410.
Ghorbanli, M., Gafarabad, M., Amirkian, T. and Allahverdi, M.B. (2013). Investigation of proline, total protein, chlorophyll, ascorbate and dehydroascorbate changes under drought stress in Akria and Mobil tomato cultivars. Iranian Journal of Plant Physiology. 3(2): 651-658.
Gill, S.S. and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry. 48(12): 909-930.
Gregory, P.J. (2006). Plant Roots (Growth, Activity and Interaction with Soils). pp. 150-173. ed. Blackwell Publishing.
Heidari Sharifabadi, H. (2001). Methods to deal with dryness and drought drought. Publishing Research Institute of Forests and Rangelands. 1: 15-46.
Hojati, M., Modarres-Sanavy, S.A.M. and Karimi, M. (2010). Deficit stress. Acta physiologiae plantarum. 33(1): 105-112.
Holy, M.C. (1972). Indole acetic acid oxidase: a dual catalytic enzyme. Journal of Plant Physiology. 50: 15-18.
Jain, M., Nandwal, A.S., Kundu, B.S., Kumar, B., Sheoran, I.S., Kumar, N., Mann, A. and Kukreja, S. (2006). Water relations, activities of antioxidants, ethylene evolution and membrane integrity of pigeonpea roots as affected by soil moisture. Biologia plantarum. 50(2): 303-306.
Jaleel, C.A., Manivannan, M., Wahid, A., Farooq, M., Al-Juburi, H.J., Somasundaram, R. and Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. Journal Agriculture Biology. 11(1): 100-105.
Jiang, Y. and Huang, B. (2000). Effects of drought or heat stress alone and in combination on Kentucky bluegrass. Crop Science. 40: 1358-1362.
Jiang, Y. and Huang, B. (2001). Drought and heat sress injury to two cool-season turfgrasses in relation to antiaxdant metabolism and lipid peroxidation. Crop Science. 41: 436-442.
Jiang, Y. and Huang, B. (2002). Protein alterations in tall fescue in response to water stress and abscisic acid. Crop Science. 42: 202-208.
Jiang, Y. and Huang, B. (2001). Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop science. 41(2): 436-442.
Kar, M. and Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant physiology. 57(2): 315-319.
Koc, E., İslek, C. and Üstün, A.S. (2010). Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. Gazi University Journal of Science. 23(1): 1-6.
Kuzhuvelil B. Harikumar, Sung  B., Tharakan, S.T., Pandey, M.K., Joy, B., Guha, S., Krishnan, S. and Aggarwal, B.B. (2010). Sesamin manifests chemopreventive effects through the suppression of NF-κB–regulated cell survival, proliferation, invasion, and angiogenic gene products. Molecular Cancer Research. 8(5): 751-761.
Kuznetsov, V.V. and Shevyakova, N.I. (1999). Proline under stress: biological role, metabolism, and regulation. Russian Journal of Plant Physiology. 46(2): 274-287.
Lamas, A., Ullrich, C.I. and Sanz, A. (2002). Cadmium effects on transmembrance electrical potential difference, respiration and membrane permeability of rice (Oryza sativa) roots. Plant and Soil. 219: 21-28.
Langham, D.R. and Wiemers, T. (2002). Progress in mechanizing sesame in the US through breeding. In: Janickand J, Whipkey A (ed) Trends in new crops and new uses. American Society for Horticultural Science Press. pp. 157-173. ed. Alexandria, Virginia.
Lehmann, S., Funck, D., Szabados, L. and Rentsch, D. (2010). Proline metabolism and transport in plant development. Amino acids. 39(4): 949-962
Liu, C., Liu, Y., Guo, K., Fan, D., Li, G., Zheng, Y., Yu, L. and Yang, R. (2011). Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environmental and Experimental Botany. 71(2): 174-183.
Mandhanis, S., Madan, S. and Whney, V. (2006). Antioxidant defence mechanism under salt stress in wheat seedling. Biologia Plantarum. 52 (6): 22-27.
Manivannan, P., Abdul Jaleel, C., Sanka, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G.M.A. and Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces Biointerfaces. 59: 141–149.
Manivannan, P., Jaleel, C.A., Kishorekumar, A., Sankar, B., Somasundaram, R., Sridharan, R. and Panneerselvam, R. (2007). Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloids and Surfaces B: Biointerfaces. 57(1): 69-74.
Mardeh, A. S. S., Ahmadi, A., Poustini, K. and Mohammadi, V. (2006). Evaluation of drought resistance indices under various environmental conditions. Field Crops Research. 98(2): 222-229.
Mazarie, A., Mousavi-nik, S. M., Ghanbari, A. and Fahmideh, L. (2019). Effect of titanium dioxide spraying on physiological characteristics of sage (Salvia officinalis L.) under water stress. Environmental Stresses in Crop Sciences. 12(2): 539-553.
Mazarie, A., Sirousmehr, A.R. and Babaei, Z. (2017). Effect of mycorrhizal fungi on some morphological and physiological charactristics of Milk thistle (Silybum marianum(L.) Gaertn.) under drought stress. Iranian Journal of Medicinal and Aromatic Plants. 33(4): 620-635.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science. 7(9): 405-410.
Mohamadnia, R., Nejad, A.R. and Bahraminejad, S. (2018). Ocimum basilicum L. Iranian Journal of Horticultural Science. 49(1): 37-45.
Moridpoor, S., Sateie, A. and Ghorban Ali, M. (2015). Evaluation of Growth and Content of Pigments and Whole Wheat Protein of Urtica dioical L in Different Water Regimes. Journal of Iranian Plant Ecophysiological Research. 9: 118-127.
Movahhedi Dehnavi, M., Niknam, N., Behzadi, Y., Mohtashami, R. and Bagher, R. (2017). Comparison of physiological responses of linseed (Linum usitatissimum L.) to drought and salt stress and salicylic acid foliar application. Iranian Journal of Plant Biology. 9(3): 39-62.
Movludi, A., Ebadi, A., Jahanbakhsh, S., Davari, M. and Parmoon, G. (2014). The effect of water deficit and nitrogen on the antioxidant enzymes’ activity and quantum yield of barley (Hordeum vulgare L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 42(2): 398-404.
Munne-Bosch, S. and Alegre, L. (2004). Die and let live: leaf senescence contributes to plants survival under drought stress. Functional Plant Biology. 31 (3): 203-216.
Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascarbate specific peroxidases in spinach Chloroplasts. Plant cell physiology. 22: 867-880.
Ninganoor, B. T., Parameshwarapa, K. G. and Chetti, M. B. (1995). Analysis of some physiological characters and their association with seed yield and drought tolerance in safflower genotypes. Kamataka Journal agriculture Science. 81: 46- 49.
Noctor, G. and Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual review of plant biology. 49(1): 249-279.
Oliveira Neto, C.F.D., Lobato, A.K.D.S., Gonçalves-Vidigal, M.C., Costa, R.C.L.D., Santos Filho, B.G.D., Alves, G.A.R., Maia, W.J.M.S., Cruz, F.J.R., Neves, H.K.B. and Lopes, M.S. (2009). Carbon compounds and chlorophyll contents in sorghum submitted to water deficit during three growth stages. Journal of Food, Agriculture and Environmen. 7(3-4): 588-593.
Ozkur, O., Ozdemir, F., Bor, M. and Turkan, I. (2009). Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environmental and Experimental Botany. 66(3): 487-492.
Patade, V.Y., Bhargava, S. and Suprasanna, P. (2011). Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation, and antioxidant defense. Journal of Plant Interactions. 6(4): 275-282.
Petropoulos, S.A., Daferera, D., Polissiou, M.G. and Passam, H.C. (2008). The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Scientia Horticulturae, 115(4): 393-397.
Rajeswari, S., Thiruvengadam, V. and Ramaswamy, N. M. (2010). Production of interspecific hybrids between Sesamum alatum Thonn and Sesamum indicum L. through ovule culture and screening for phyllody disease resistance. South African Journal of Botany. 76(2): 252-258
Razavizadeh, R., Ehsanpour, A.A., Ahsan, N. and Komatsu, S. (2009). Proteome analysis of tobacco leaves under salt stress. Peptides. 30(9): 1651-1659.
Reyes, L.F. and Cisneros-Zevallos, L. (2003). Wounding stress increases the phenolic content and antioxidant capacity of purple-flesh potatoes (Solanum tuberosum L.). Journal of Agricultural and Food Chemistry. 51(18): 5296-5300.
Sadatesaelan, K.S., Sanavi, S.A.M.M. and Hajilouei, S. (2010). Study of the effect of drought stress on antioxidant system in seedlings of some perennial alfalfa ecotypes. Iranian Journal of Field Crop Science. 41(1): 67-77.
Sadeghzadeh-Ahari, D., Hass, M.R., Kashi, A.K., Amri, A. and Alizadeh, K.H. (2010). Genetic variability of some agronomic traits in the Iranian Fenugreek landraces under drought stress and non-stress conditions. African Journal of Plant Science. 4(2): 012-020.
Sairam, R. K. and Saxena, D. C. (2000). Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science. 184: 55-61.
Shamsi, K. (2010). The effect of drought stress on yield, relative water content, proline, soluble carbohydrate and cholorophyll of bread wheat cultivars. Journal of Animal and Plant. 3: 1051-1060.
Sharma, P. and Dubey, R.S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes at growing rice seedlings. Plant Growth Regulation. 46(3): 209-221.
Siddiqui, M., Al-Khaishany, M., Al-Qutami, M., Al-Whaibi, M., Grover, A., Ali, H., Al-Wahibi, M. and Bukhari, N. (2015). Response of different genotypes of faba bean plant to drought stress. International Journal of Molecular Sciences. 16(5): .10214-10227.
Sivakumar, P., Sharmila, P. and Saradhi, P.P. (2000). Proline alleviates salt-stress-induced enhancement in ribulose-1, 5-bisphosphate oxygenase activity. Biochemical and biophysical research communications. 279(2): 512-515.
Taheri Asghari, M. (2010). Water stress effect on the number of characters in the herb chicory (Cichorium intybus) under different plant densities. Journal - Research echo physiological crops. 2: 147-155.
Takeuchi, W., Takahashi, H. and Kojima, M. (1992). Purification and characterization of the main isozyme of polyphenol oxidase in mung bean (Vigna mungo) seedlings. Bioscience, Biotechnology and Biochemistry. 56(7): 1134-1135.
Talukder, A., Meisner, C. A., Sarkar, M. A. and Islam, M. S. (2010). Effect of water management, tillage options and phosphorus status on arsenic uptake in rice. Ecotoxicology and Environmental Safety. 74(4): 834-839.
Tarahomi, P., Lahooti, D. and Abbasi, P. (2010). Effects of drought stress on soluble sugars, chlorophyll and potassium S. leriifolia (Salvia leriifolia Benth). Journal of Biological Sciences. 3(2): 1-7.
Tas, S. and Tas, B. (2007). Some physiological responses of drought stress in wheat genotypes with different ploidity in Turkiye. World Journal of Agricultural Science. 3(2): 178-183.
Thipyapong, P., Melkonian, J., Wolfe, D.W. and Steffens, J.C. (2004). Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Science. 167(4): 693-703.
Uzun, B., Arslan, Ç. and Furat, Ş. (2008). Variation in fatty acid compositions, oil content and oil yield in a germplasm collection of sesame (Sesamum indicum L.). Journal of the American Oil Chemists' Society. 85(12): 1135-1142.
Verma, K. K., Singh, M., Gupta, R.K. and Verma, C.L. (2014). Photosynthetic gas exchange, chlorophyll fluorescence, antioxidant enzymes, and growth responses of Jatropha curcas during soil flooding. Turkish Journal of Botany. 38(1): 130-140.
Weiss, E. A. (2000). Oilseed crops. Pp. 150-175. ed .Blackwell Science.
Wen-Bin W., Yun-Hee K., Haeng-Soon L., Ki-Yong K. and Xi-Ping D. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry. 47(7): 570-577.
Xiao, X., Xu, X. and Yang, F. (2008). Adaptive responses to progressive drought stress in two Populus cathayana populations. Silva Fennica. 42(5): 705-719.
Yang, Y., Han, C., Liu, Q., Lin, B. and Wang, J. (2008). Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiologiae Plantarum. 30(4): 433-440.
Yazdani Buicki, R., Rezvani Moghadam, P., Khazaei, H. R., Ghorbani, R. and Asterai, A.R. (2009). Effects Stresses Salt and Drought on Features Bud Woman Seed Milk thistle (Silybum marianum). Journal Research Farm Iran. 8(1): 12-19.
Zarco, P.J., Miller, J. R., Mohammed, G.H. and Noland, T.L. (2010). Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf-level measurements and model simulation. Remote Sensing of Environment. 74(3): 582-595.
Zlatev, Z.S., Lidon, F.C., Ramalho, J.C. and Yordanov, I.T. (2006). Comparison of resistance to drought of three bean cultivars. Biologia Plantarum. 50(3): 389-394.