Aghazadeh, R., Gharayazi, B., Nematzadeh, B.C. and Babaeian, N. (2004). Classification of Iranian rice germplasm by RAPD markers. Journal of Agricultural Science. 3: 757-767.
An, Z.W., Xie, L.L, Cheng H., Zhou, Y., Zhang, Q. and He, X.G. (2009). A silver staining procedure for nucleic acids in polyacrylamide gels without fixation and pretreatment. Analytical Biochemistry. 391 (1): 77-9.
Anbumalarmathi, J. and Mehta, P. (2013). Effect of Salt Stress on germination of indica rice varieties. Electronical Journal of Biotechnology Seince. 6(1): 1-6.
Bernier, J., Kumar, A., Ramaiah, V., Spaner, D. and Atlin, G. (2007). A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Journal of Crop Science. 47(2): 507–518.
Diwan, J.M., Channbyregowda, V., Shenoy, P. and Salimath, B., Hat, R. (2013). Molecular mapping of early vigor related QTLs in rice. Research Journal of Biological. 1: 24-30.
Dixit, S., Singh, A. and Kumar, A. (2014). Rice breeding for high grain yield under drought: a strategic solution to a complex problem International Journal of Agronomy. 14:1–15.
Donde, R., Kumar, J., Gouda, G., KumarGupta, M., Mukherjee, M., YasinBaksh, Sk., Mahadani, P., KumarSahoo, K., Behera, L. and KumarDash, S. (2019). Assessment of Genetic Diversity of Drought Tolerant and Susceptible Rice Genotypes Using Microsatellite Markers. Rice Science. 26(4): 239-247.
Hussain, Z., Othman, A.M., and Othman, A.S. (2011). Association of Commercial Rice Varieties with Weedy Rice Accessions (Oryza sativa) in Pulau Pinang's Rice Granary Area. Tropical Life Sciences Research. 22(2): 1–11.
Karamanos, A.J. and Papatheohari, A.Y. (1999). Assessment of drought resistanceof crop genotypes by means of thewater potential index. Crop Science. 39: 1792-1797.
Khodabandeh, N. Cereals. (1995). Tehran University Press.
Kumar, A., Basu, S., Ramegowda, V. and Pereira, A. (2017). University of Arkansas, USA. Mechanisms of drought tolerance in rice. University of Arkansas, USA, pp:131-163.
Kumar, A., Dixit, S., Ram, T., Yadaw, R.B., Mishra, K.K. and Mandal, N.P. (2014). Breeding highyielding drought-tolerant rice: genetic variations and conventional and molecular approaches. Journal of Experimental Botany. 65 (21): 6265–78.
Lafitte, H R., Ismail, A. and Bennet, J. (2004). Abiotic stress tolerance in rice for Asia: progress and the future, in New directions for a diverse planet: Proceedings of the 4th International Crop Science Congress, Brisbane. Australia
Lanceras, J.C., Pantuwan, G., Jongdee, B. and Toojinda, T. (2004). Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiology. 135: 384–99.
Mohammad Alagh, Sh., Sabouri, H. and Dadars, A.R. (2014). Relationship analysis for rice root characteristics in drought stress conditions, 16th national conference of rice, Sari, Genetics and biotechnology and agriculture research center of Tabarestan, Faculty of Agricultural Sciences and Natural Resources, Sari.
Mohammad Allagh, Sh., Sabouri, H. (2014). Relationship analysis for rice root characteristics in drought stress conditions. Proceedings of the Sixteenth National Conference on Rice. Faculty of Agricultural Sciences and Natural Resources, Sari, Genetics and Agricultural Technology Biotechnology Research Center, Tabarestan.
Ndjiondjop, M.N., Cisse, F., Futakuchi, K., Lorieux, M., Manneh, B., Bocco, R. and Fatondji, B. (2010). Effect of drought on rice (Oryza spp.) genotypes according to their drought tolerance level. Innovation and Partnerships to Realize Africa’s Rice Potential, Second Africa Rice Congress, Bamako, Mali, 22-26.
Park, G.H., Kim, J.H. and Kim, K.M. (2014). QTL analysis of yield components in rice using a cheongcheong/nagdong doubled haploid genetic map. American Journal of Plant Sciences. 5: 1174-1180.
Raiesi, T., and Sabouri, A. (2015). Validation and association analysis of microsatellite markers related to drought and salinity tolerance in aerobic and Iranian rice under osmotic stress. Crop Biotechnology. 10: 57-72.
Sabouri, A., Dadras, A.R., Khoshchehreh, H., Vatanparast, A., and Aflatouni, H. (2019). Investigation of rice recombinant inbred lines based on drought tolerance usingtolerance indices and SSR markers. Iranian Journal Field Crop Science. 4: 13-24.
Sabouri, A., Sabouri, H., and Dadras, A.R. (2013). Association analysis of closely linked markers to major QTLs Saltol and SKC1 and salt tolerance-related traits in rice varieties. Cereal Research. 3(1): 53-68.
Sabouri, H., Gilaki, J., Jafarzadeh, M.R. and Sabouri, A. (2011). Investigation of adaptation of ricevarieties tolerant to drought stress in the Gonbad. Proceedings of the First National Congress on Science and Technology of Agriculture. September 10-12, Zanjan University, Zanjan, Iran. pp: 290-293.
Saghi Maroof, M.A., Biyaoshev, R.M., Yang, G.P., Zhang, Q. and Allard, R.W. (1994). Extra ordinarily polymorphic microsatellites DNA in barly species diversity, chromosomal location, and population dynamics. Processing of the academy of sciences, USA, 91: 4566-5570. Science. 6 (12): 355- 363
Sandhu, N. and Kumar, A. (2017). Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and Their Use in Breeding Programs. Agronomy. 7-27.
Skaria, R., Sen, S. and Muneer, P. (2011). Analysis of genetic variability in rice varieties (Oryza sativa L.) of Kerala using RAPD marker. Genetic Engineering and Biotechnology Journal. 10: 1-9.
Soroush, R., Mesbah, H., Hossein-Zadeh, H. and Bozorgypoor, A. (2005). Study of Phenotypic and genetic variation for quantitative and qualitative trait in rice. Seed and Plant. 20: 167-182.
Swamy, B.P.M., Shamsudin, N.A.A., Rahman, S.N.A., Mauleon, R., Ratnam, W., Teressa Sta, M., Kumar, C. and Kumar, A. (2017). Association Mapping of Yield and Yieldrelated Traits Under Reproductive Stage Drought Stress in Rice (Oryza sativa L.). Rice. 10:21.
Tabkhkar, N., Rabiei, B., Samizadeh Lahiji, H. and Hosseini Chaleshtori, M. (2018). Genetic Variation and Association Analysis of the SSR Markers Linked to the Major Drought-Yield QTLs of Rice. Biochemical Genetics. 56(4): 356-374.
Tuyen, D.D. and Prasad, D.T. (2008). Evaluating difference of yield treat among rice genotypes (Oryza sativa L.) under low moisture condition using candidate gene markers. Omonrice. 16: 24-33.
Venuprasad, R., Dalid, CO., Del Valle, M., Zhao, D., Espiritu, M., Sta Cruz, M.T., Amante, M., Kumar, A. and Atlin, G.N. (2009). Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theoretical and Applied Genetics. 120:177–190.
Vikram, P., Swamy, M. B.P., Dixit, S.H., Ahmed, H.U., Cruz1, M.T.S., Kumar Singh, A. and Kumar, A. (2011). qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genetics. 12(89):1-15.
Youssef, M.A., Mansour, A. and Solliman, S. (2010). Molecular markers for new promising drought tolerant lines of rice under drought stress via RAPD-PCR and ISSR markers. Journal of American Science. 6(12):355-363.
Zhou, J., You, A., Ma, Z., Zhu, L. and He, G. (2012). Association analysis of important agronomic traits in japonica rice germplasm. African Journal of Biotechnology. 11(12): 2957-2970.
Golsharkhi, M., Biabani, A., Sabouri, H., Mohammad Esmaili, M. (2015). Studying the relationship between agronomic Traits of rice under flooding and drought stress. Environmental Stresses in Agricultural Sciences. 2(8):204-191.