تأثیر تنش سرما بر زنده‌مانی و تبادلات گازی نهال زیتون (Olea europaea L.)

نوع مقاله: پژوهشی

نویسندگان

1 گروه جنگلداری، دانشکده منابع طبیعی و علوم دریایی، تربیت مدرس، نور، ایران.

2 موسسه تحقیقات جنگل‌ها و مراتع کشور، مازندران، ساری، ایران.

چکیده

تحمل به سرما یکی از عوامل مهم توزیع و پراکنش گونه­های گیاهی محسوب می­شود. این تحقیق با هدف بررسی پاسخ‌های زنده­مانی و تبادلات گازی نهال زیتون (رقم زرد) به تنش در دماهای پایین و یخ­زدگی انجام شد. برای این کار در سال 1396، تعداد 144 اصله نهال­ گلدانی دو ساله بازکاشتی زیتون (رقم زرد) به ارتفاع متوسط 30 سانتی‌متر به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی در زمان‌های یک و سه ساعت در معرض پنج سطح سرما-یخ­زدگی شامل دماهای 2+، 5-، 7-، 10-، 16-، 20- درجه سانتی‌گراد قرار گرفتند. صفات تبادلات گازی از قبیل نرخ فتوسنتز کل، تعرق و هدایت روزنه­ای برای هر سطح دما در سه نوبت شامل قبل از تنش، بلافاصله پس از تنش و 12 روز پس از تنش اندازه‌گیری شدند. نتایج نشان داد که در هر یک از سطوح سرما، اندازه­ متغیرها در هر دو مدت (یک و سه ساعت) کاهش یافت و این کاهش در نهال­هایی که سه ساعت در سرما قرار داشتند بیشتر بود. در دماهای 10-، 16- و 20- درجه سانتی‌گراد کلیه نهال­های زیتون دچار زوال شدند. این در حالی است که تحت تأثیر دماهای 7- درجه سانتی­گراد و گرم‌تر (در هر دو مدت نگهداری)، اندازه متغیرهای تبادلات گازی تا روز دوازدهم پس از تنش بازیابی شد. در کل، این تحقیق آشکار ساخت که نهال زیتون رقم زرد تا سرمای 7- درجه را برای مدت سه ساعت به­خوبی تحمل می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of cold stress on survival and gas exchanges of olive seedlings (Olea europaea L.)

نویسندگان [English]

  • Khadijeh Mohadjeri 1
  • Masoud Tabari Kouchaksaraei 1
  • Sadati Seyed Ehsan 2
  • Ali Khodadust 1
1 Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
2 Research Center of Forests and Rangelands, Mazandaran, Sari, Iran
چکیده [English]

Cold tolerance is one of the important factors in the distribution of plant species. The aim of this study was to investigate the survival and gas exchange responses of olive (Olea europaea L.) seedlings to low temperature and freezing stress. For this purpose, 144 two-years-old potted seedlings of olive (cultivar yellow) with averaged height of 30 cm were examined as factorial in a completely random design (CRD) with 3 replications. Seedlings were exposed to six temperature levels (+2, -5, -7, -10, -16, and -20° C) for 1 and 3 hours. Gas exchange parameters such as net photosynthesis rate, transpiration, and stomatal conductance were measured for each treatment in three steps: before stress, immediately after stress, and 12 days after stress. Results showed that in each temperature level net photosynthesis rates, stomatal conductance, and transpiration reduced in both 1 and 3 hours chilling and this reduction was higher in seedlings subjected to 3 hours chilling. Olive seedlings exposed to -10, -16 and -20 °C temperatures were dead while in seedlings subjected to -7 °C and higher temperature (under both 1 and 3 hours chilling) gas exchange variables were recovered on day 12 after the stress. In general, this research revealed that olive seedlings (cultivar yellow) are able to tolerate low temperature up to -7°C for 3 hours.

کلیدواژه‌ها [English]

  • freezing
  • Low temperature
  • Olea europaea L
  • Photosynthesis
  • Stomatal Conductance
Afshar-Mohammadian, M., Rezaei, S. and Ramezani, M. (2012). The impact of cold stress on two olive cultivars. Journal of Plant Physiology. 1(2): 1-11. (In Persian)

Azzarello, E., Mugnai, S., Pandolfi, C., Masi, E., Marone, E. and Mancuso, S. (2009). Comparing image (fractal analysis) and electrochemical (impedance spectroscopy and electrolyte leakage) techniques for the assessment of the freezing tolerance in olive. Trees. 23(1): 159-167.

Banerjee, A., Wani, S. H. and Roychoudhury, A. (2017). Epigenetic control of plant cold responses. Frontiers in Plant Science, 8, 1643.

Bernardini, E. and Visioli, F. (2017). High quality, good health: the case for olive oil. European Journal of Lipid Science and Technology. 119(1): 1500505.

Bonfil, C., Cortés, P., Espelta, J. M. and Retana, J. (2004). The role of disturbance in the co‐existence of the evergreen Quercus ilex and the deciduous Quercus cerrioides. Journal of Vegetation Science. 15(3): 423-430.

Cavender-Bares, J., Apostol, S., Moya, I., Briantais, J. M. and Bazzaz, F. A. (2000). Chilling-induced photoinhibition in two oak species: Are evergreen leaves inherently better protected than deciduous leaves?. Photosynthetica. 36(4): 587-596.‏

Eris, A., Gulen, H., Barut, E. and Cansev, A. S. U. M. A. N. (2007). Annual patterns of total soluble sugars and proteins related to coldhardiness in olive (Olea europaea L.‘Gemlik’). The Journal of Horticultural Science and Biotechnology. 82(4): 597-604.

Escobar, R.F., de la Rosa Navarro, R., Moreno, L.L., Gómez, J.A., Testi, L., Orgaz, F., and Msallem, M. (2012). Sistemas de producción en olivicultura. Olivae: revista oficial del Consejo Oleícola Internacional. (118): 55-68.

Garcı́a-Plazaola, J. I., Artetxe, U. and Becerril, J. M. (1999). Diurnal changes in antioxidant and carotenoid composition in the Mediterranean schlerophyll tree Quercus ilex (L.) during winter. Plant Science. 143(2): 125-133.‏

Ghaderi, N., Siosemardeh, A.and Shahoei, S. (2005). The effect of water stress on some physiological characteristics in'rashe'and'khoshnave'grape cultivars. International Workshop on Advances in Grapevine and Wine. 317-322. Gómez-del-Campo, M. and Barranco, D. (2005). Field evaluation of frost tolerance in 10 olive cultivars. Plant Genetic Resources. 3(3): 385-390.

Gusta, L.V. and Wisniewski. M. (2013). Understanding plant cold hardiness: an opinion. Physiologia Plantarum. 147: 4-14.

Hajiboland, R., Joudmand, A., Aliasgharzad, N., Tolrá, R. and Poschenrieder, C. (2019). Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley. Crop and Pasture Science. 70(3): 218-233.

Hatfield JL, Prueger JH. (2015). Temperature extremes: effect on plant growth and development. Weather Clim Extrem. 10: 4–10

Homapour, M., Hamedi, M., Moslehishad, M. and Safafar, H. (2014). Physical and chemical properties of olive oil extracted from olive cultivars grown in Shiraz and Kazeroon. Iranian Journal of Nutrition Sciences & Food Technology. 8(3): 121-130. (In Persian)

Janska, A., Marsil, P., Zelenkova, S. and Ovesna. J. (2010). Cold stress and acclimation-what is important for metabolic adjustment? Plant Biology. 12: 395-405.

Larcher, W. (1970). Kalteresistenz und uberwinterungsvermogen mediterraner Holzpflanzen. Ecology Plant. 5: 267-85.

Li, X., Ahammed, G. J., Li, Z. X., Zhang, L., Wei, J. P., Yan, P. and Han, W. Y. (2018). Freezing stress deteriorates tea quality of new flush by inducing photosynthetic inhibition and oxidative stress in mature leaves. Scientia Horticulturae. 230: 155-160.

Miura, K., and Furumoto, T. (2013). Cold signaling and cold response in plants. International Journal of Molecular Sciences, 14(3): 5312-5337.

Simkeshzadeh, N., Mobli, M., Etemadi, N. and Baninasab, B. (2011). Assessment of the frost resistance in some olive cultivars using visual injuries and chlorophyll fluorescence. Journal of Horticultural Science. 24(2): 163-169. (In Persian)

Palliotti, A. and Bongi, G. (1996). Freezing injury in the olive leaf and effects of mefluidide treatment. Journal of Horticultural Science. 71(1): 57-63. Andersen, P. C., and Schaffer, B. (Eds.). (1994). Handbook of Environmental Physiology of Fruit Crops (pp. 123-140). Boca Raton: CRC Press.

Parad, G.A., Tabari  Kouchaksaraei,  M., Striker,  G.G.,  Sadati,  S.E.  and Nourmohammadi K. (2016). Growth, morphology and gas exchange responses of two-year-old Quercus castaneifolia seedlings to flooding stress.  Scandinavian Journal of Forest Research. 31(5): 458-466.

Rihan HZ, Al–Issawi M, Fuller MP. (2017). Advances in physiological and molecular aspects of plant cold tolerance. J Plant Interact. 12:143–157.

Ruiz, N., Barranco, D., Rapoport. H. F. (2006). Anatomical response of olive (Olea europaea L.) to freezing temperatures. Journal of Horticultural Science and Biotechnology.81: 783-790.

Saadati, S., Baninasab, B., Mobli, M., Gholami, M., (2019). Measurements of freezing tolerance and their relationship with some biochemical and physiological parameters in seven olive cultivars. Acta Physiologiae Plantarum. 41(4), 51.

Taïbi, K., Del Campo, A. D., Vilagrosa, A., Bellés, J. M., López-Gresa, M. P., López-Nicolás, J. M., Mulet, J. M., (2018). Distinctive physiological and molecular responses to cold stress among cold-tolerant and cold-sensitive Pinus halepensis seed sources. BMC Plant Biology. 18: 236.

Uemura, M., Tominaga, Y., Nakagawara, C., Shigematsu, S., Minami, A. and Kawamura. Y. (2006). Responses of the plasma membrane to low temperatures. Physiologia Plantarum 126: 81-89.

Valladares, F., Balaguer, L., MartinezFerri, E., PerezCorona, E. and Manrique, E. (2002). Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytologist. 156(3): 457-467.‏

Valladares, F., Zaragoza-Castells, J., Sánchez-Gómez, D., Matesanz, S., Alonso, B., Portsmuth, A. and Atkin, O. K. (2008). Is shade beneficial for Mediterranean shrubs experiencing periods of extreme drought and late-winter frosts? Annals of Botany. 102(6): 923-933.

Wani, S.H., Sah, S.K., Sanghera, G., Hussain, W., and Singh, N.B. (2016). “Genetic engineering for cold stress tolerance in crop plants” in Advances in Genome Science, Vol. 4, ed Atta-ur-Rahman (London, UK: Bentham Science. 173–201.

Zhang, S., Jiang, H., Peng, S., Korpelainen, H. and Li, C. (2010). Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. Journal of Experimental Botany. 62(2): 675-686.‏

Zhang, X., Da Silva, J. A. T., Niu, M., Li, M., He, C., Zhao, J. and Ma, G. (2017). Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves. Scientific Reports. 7:1-18.