بررسی تاثیر پیش تیماری pH بر رشد و ویژگی های فتوسنتزی سیانوباکتریوم Fischerella sp. FS 18

نوع مقاله: پژوهشی

نویسندگان

1 گروه زیست شناسی ،داشگاه ازاد اسلامی واحد گرگان،ایران

2 گروه زیست‌شناسی، دانشگاه آزاد اسلامی، واحد گرگان، گرگان، ایران

3 گروه شیمی ، واحد گرگان، دانشگاه آزاد اسلامی، گرگان، ایران

چکیده

در این تحقیق تاثیر پیش تیمار ترکیبی زمان (24 و 96 ساعت) و pH (7 و 9) در شرایط محدودیت افراطی دی اکسید کربن (عدم هوادهی، عدم تلقیح دی اکسید کربن)، بر فاز تصاعدی رشد، محتوای رنگیزه ای به ازای سلول، جابجایی جذب کلروفیل، ساختار و عملکرد فیکوبیلی زوم، نسبت رنگیزه‌‌های مرکز واکنش و کمپلکس‌‌های جمع آوری کننده نور؛ و نسبت فتوسیستم یک به دو در سیانوباکتری استیگونماتال Fischerella sp.FS 18 بررسی گردید. نتایج نشان داد اعمال پیش تیمارها در هردو زمان 24 و 96 ساعت و هر دو شرایط خنثی و قلیایی، سبب حفظ فاز تصاعدی رشد شد. بر خلاف قله جذبی کلروفیل، رنگیزه‌‌های سلولی از الگوی ثابتی در رابطه با پیش تیمارها تبعیت نمی‌کردند. نقطه اصلی تاثیر پیش تیمارها، فیکوبیلی‌زوم بود. سیانوباکتری در بخش میله‌ای خود الگوی یکسانی را از نظر واکنش به پیش تیمارها نشان داد. فیکوسیانین به اندازه یک واحد و فیکواریترین تا سه واحد تحت تاثیر پیش تیمارها تغییر جذب نشان داد. بالاترین نسبت فتوسیستم یک به دو در شرایط بیست و چهار ساعت و محیط خنثی مشاهده شد. گذشت زمان این نسبت را کاهش داد و سبب ضعف در بهره‌وری انتقال انرژی در سیستم‌‌های فتوسنتزی گردید. تغییر در عملکرد فیکوبیلی زوم می‌تواند نوعی مکانیسم ترمیمی برای جبران این کاهش باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of pH pretreatment on growth and photosynthetic properties of cyanobacterium Fischerella sp. FS 18

نویسندگان [English]

  • Bahareh Abbasi 1
  • shadman shokravi 2
  • Mazyar Ahmadi Golsefidi 3
  • Aryan Sateei 2
  • elahe kiaei 2
1 Department of Biology, Islamic Azad University, Gorgan Branch, Gorgan, Iran
2 Department of Biology, Islamic Azad University, Gorgan Branch, Gorgan, Iran
3 Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran
چکیده [English]

In the present study, the effects of pretreatment of time (24 and 96 hours) and pH (7 and 9) at extremely limited carbon dioxide concentration were studied on the exponential growth phase, photosynthetic pigments per cell, absorption shift of chlorophyll, structure and function of phycobilisome, the ratio of light harvesting to reaction center pigment, and the ratio of photosystem 1 to photosystem 2 in stigonematalean cyanobacterium Fischerella sp.FS 18.  Results showed that pretreatments kept the exponential growth phase at both 24 and 96 hours and also under pHs 7 and 9. Contrary to the absorption peak of chlorophyll, cellular pigments showed no stable pattern regarding pretreatments. Phycobilisomes were the main point of treatment affects. The pattern of the rode part of phycobilisomes was the same at pretreatment reactions. The shift of phycocyanin was about 1 and phycoerythrin about 3. The highest rate of photosystem 1 to photosystem 2 ratio was observed at 24 hours and under neutral condition. This changed by the time and led to decreased efficiency of energy transport in photosynthesis system. The change in the phycobilisome operation may be a compensation mechanism to mitigate the degree of such a decrease.

کلیدواژه‌ها [English]

  • Alkalinity
  • Cyanobacteria
  • Fischerella
  • pH
  • Pretreatment
  • Phycobilisome
  • Time
Amirlatifi, F., Soltani, N., Saadatmand, S., Shokravi, S. and Dezfulian, M. (2013). Crude oil-induced morphological and physiological responses in cyanobacterium Microchaete tenera ISC13. International Journal of Environmental Research, 7(4):1007-1014.

Amirlatifi, H.S., Shokravi, S., Sateei A., Golsefidi, M.A. and Mahmoudjanlo, M.(2018).Samplesof cyanobacterium Calothrix sp. ISC 65 collected from oil polluted regions respond to combined effects of salinity, extremely low-carbon dioxide concentration and irradiance. Algologia, 28(2): 182–201.

Anagnostidis, K. and Komarek, J. (1990). Modern approaches to the classification of cyanobacteria. Stigonematales. Archieves for Hydrobiology Supplement. l4:224-286.

Anand, N.L., Radha, R.S., Hopper, G.R. and Subramanian, T.D. (1990) Blue-green algae as biofertilizers: certain view points on the choice of suitable isolates. In: Perspective in phycology, International symposium of phycology at university of Madras, New Delhi: Today and Tomorrow’s Publishers. pp. 383- 391.

Baftechi, L., NejadSattari, T., Ebrahimzadeh Maboud, H. and Shokravi, S. (2001). The effects of light intensity and duration on growth and heterocyst frequency of the cyanobacterium Fischerella sp.-M.Sc.thesis, Facuty of Science, Tehran University.

Ban˜ ares-Espan˜ A., Jacco, E., Kromkamp, C., Lo´ pez-Rodas, V., Costas, E. and Flores-Moya, A. (2013). Photoacclimation of cultured strains of the cyanobacterium Microcystis aeruginosa to high-light and low-light conditions. FEMS Microbiology Ecology. 83: 700–710.

Barcelos e Ramos, J., Biswas, H., Schulz, K.G., LaRoche, J. and Riebesell, U. (2006). Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. Global Biogeochemical Cycles. 21(2):1-6.

Boussiba, S. (1988). Anabaena azollae as biofertilizer. In: Algal biotechnology, eds. T., Stadler, J., Millon, M.C., Verdus, Y., Karamanos, H.M. and Christiaen, D. Elsevier applied science. pp. 177-180

Burns, R.J., Danielle MacDonald, C., McGinn J.P. and Campbell, D.A. (2005). Inorganic carbon repletion disruptsphotosynthetic acclimation low temperature in the cyanobacterium Synechococcus elongatus. Journal Phycology. 41: 322-334.

Cao, L., Caldeira, K. and Jain, A.K. (2007). Effects of carbon dioxide and climate change on ocean acidification and carbonate mineral saturation. Geophysical Research Letters. 34:1-5.

Czerny, J., Barcelos e Ramos, J. and Riebesell, U. (2009). Influence of elevated CO2concentrations on celldivision and nitrogen fixation rates in the bloom–forming cyanobacterium Nodularia  spumigena. Biogeosciences, 6:1865–1875.

Deblois, G. and Giguère, V. (2013). Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nature Reviews Cancer. 13(1): 27.

Desikachary, T.V. (1959) Cyanophyta. Indian council of agricultural research, monographs on Algae New Delhi, India. Vol.1 No.3.

Endres, S., Unger, J., Wannicke, N., Nausch, M., Voss, M. and Engel, A. (2013). Response of Nodulariaspumigena to pCO2—Part 2: Exudation and extracellular enzyme activities. Biogeosciences. 10:567–582.

Fraser, J.M., Tulk, S.E., Jeans, J.A., Campbell, D.A., Bibby, T.S. and Cockshutt, A.M. (2013). Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. Plos One, 8(3):1-11.

Gan, F., Shen, G. and Bryant, D.A. (2014). Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria. Life, 5(1):4-24.

Geitler, L. (1932). Cyanophyceae von Europa Kryptogamen flora Akademiche Verlagsgesellschaft. - Leipzig. Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Ed. 2. (Rabenhorst, L. Eds) 14: 673-1196, i-[vi].

Iranshahi, S. Nejadsattari, T., Soltani, N. and Shokravi, Sh. (2014). The effect of salinity on morphological and molecular characters and physiological responses of Nostoc sp. ISC 101. Iranian Journal of Fisheries Sciences. 13(4): 907-917. 

John, D.M., Whitton, B.W. and Brook, A.J. (2003). The Freshwater Algal Flora of the British Isles -Cambridge University Press. Hydrobiologia. DOI 10.1007/s10750-016-2851-2

Kaushik, B.D. (1987).  Laboratory methods for blue-green algae. Associated Publishing Company, New Delhi, India. 171pp.

Kiaei, E., Soltani, N., Mazaheri Assadi, M., Khavarinegad, R. and Dezfulian, M. (2013). Study of optimal conditions in order to the use of the cyanobacteria Synechococcus sp. ISC106 as a candidate for biodiesel production. Journal of Aquatic Ecology. 2(4):40-51.

Leganés, F. and Fernández-Valiente, E. (1991). The relationship between the availability of external CO2 and nitrogenase activity in the cyanobacterium Nostoc UAM205. Journal of Plant Physiology.139:135-139.

Levitan, O., Rosenberg, G., Setlik, I., Setlikova, E., Grigel, J., Klepetar, J., Prasil, O. and Berman-Frank, I. (2007). Elevated CO2 enhances nitrogen fixation and growth in themarine cyanobacterium Trichodesmium. Global Change Biology. 13:531-538.

Mimuro, M., Lipschultz, C. and Gantt, E. (1986). Energy flow in the phycobilisome core of Nostoc sp. (MAC): two independent terminal pigments. Biochimicaet Biophysica Acta. 852:126-132.

Paerl, H.W. (2014). Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life. 4: 988–1012.

Ploug, H. (2008). Cyanobacterial surface blooms formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: Small-scale fluxes, pH, and oxygen microenvironments. Limnology Oceanography. 53: 914–921.

Poza-Carrion, C., Fernandez-Valiente, E., Fernandez Pinas, F. and Leganes, F. (2001). Acclimation of photosynthetic pigments and photosynthesis of the cyanobacterium Nostoc sp. Strain UAM 206 to combined flactuations of irradiance, pH, and inorganic carbon availability. Journal of Plant Physiology. 158: 1455-1461.

Prescott, G.W. (1962). Algae of the western great lake area. W.M.C. Brown Company Pub. 977pp.

Rajabnasab, M., Khavari Nejad, R.A., Shokravi, Sh. and Nejadsattari, T. (2018). Investigating the physiological responses of three endafic strains of cyanobacteria to crude oil concentrations in limited salinity and irradiation conditions. Applied Ecology and Environmental Research. 16(4): 4559-4573.

Rajabnasab, M., Khavari-nejad, R.A., Shokravi, S. and Nejadsattari, T. (2017). Adaptation of the cyanobacterium fischerella sp. ISC 107 to the combined effects of pH and carbon dioxide concentration. Iranian Journal of Plant Physiology. 7(4):2163-2171.

Raven, J.A., Giordano, M., Beardall, J. and Maberly, S.C. (2012). Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences. 367:493–507.

Shokravi, S., Kiaei, E., Pakzad, A. and Amirlatifi, H.S. (2017). Ecophysiological acclimation and salinity amelioration of soil Cyanobacterium Anabaena sp. FS 76 collected from oil polluted regions under ccombined effects of salinity and extremely limited irradiances. Journal of Iranian Plant Ecophysiology Research. 8(11):89-102.

Shokravi, Sh., Amirlatifi, F., Safaie, M., Ghasemi, Y. and Soltani, N. (2006). Some physiological responses of Nostoc sp. JAH 109 to the combination effects of limited irradiance, pH and DIC availability Quarterly. Journal on Plant Science Researches. 3: 55-63.

Shokravi, Sh., Siahbalaie, R., Jorjani, S. and Soltani, N. (2012). Haplosiphon fontinalis (C.Agardh) Bornet, A New Record of Stigonematalean Cyanophyta for Algal Flora of Iran. Iranian Journal of Botany. 17(2): 257-262.

Solarzano, K. (1969). Determination of ammonia in natural waters by phenol hypochlorite method. Limnology and Oceanography. 14: 799–801.

Soltani, N., Baftechi, L. and Ehsan, Sh. (2009). Isolation and record of new species of cyanobacteria belonged to Oscillatoriaceae from Tehran province with use of different culture media. Journal of Plant Environmental Physiology. 4(2): 1-7.

Soltani, N., Khavari-Nejad, R., Tabatabaei Yazdi, M., Shokravi, Sh. And Fernández-Valiente, E. (2005). Screening of Soil Cyanobacteria for Antifungal and Antibacterial Activity. Pharmaceutical biology. 43(5):455-459.

Soltani, N., Khavari-Nejad, R., TabatabaeiYazdi, M., Shokravi, Sh. and Fernández-Valiente, E. (2006). Variation of Nitrogenase Activity, Photosynthesis and Pigmentation of cyanobacterium Fischerella ambigua Strain FS18 under Different Irradiance and pH. World Journal Microbiology Biotechnology. 22(6): 571-576.

Soltani, N., Khavari-Nejad, R., Tabatabaie, M., Shokravi, Sh. and Valiente, E.F. (2006). Variation of Nitrogenase Activity, photosynthesis and pigmentation of cyanobacterium Lyngbya sp. FS33 Agardh strain FS18 under different irradiance and pH. World Journal of Microbiology and Biotechnology. 22(6): 571-576.

Soltani, N., Khavarinejad, R.A., Tabatabaei Yazdi, M. and Shokravi, Sh. (2008). Growth and metabolic Feature of cyanobacterium Fischerella sp.FS18 in different Combined Nitrogen sources. Iranian Journal of Science. 18(2): 123-128

Soltani, N., Siahbalaie, R. and Shokravi, Sh. (2010). Taxonomical characterization of cyanobacterium Fischerella sp.FS 18- Amultidisciplinary approach. International journal on Algae. 1(9): 48-55.

Soltani, N., Siahbalaie, R. and Shokravi, Sh. (2010). Taxonomical Characteriazation of Fischerella sp. FS 18- International Journal of Algae. 12(1): 19-36.

Soltani, N., Zarrini, G., Ghasemi, Y., Shokravi, Sh. and Baftechi, L. (2007). Characterization of soil cyanobacterium Fischerella sp. FS18 under NaCl stress. Journal of Biological Sciences. 7(6): 931-936.

Stal, J.S. (1995). Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytology. 131:1-32.

Taheri, R., Shokravi, Sh. and Hossaianzadeh, M. (2017). Growth Assessment of Cyanobacteria Anabaena sp. FS 76 and Nostoc sp. FS 77 Affected by Thermal Shock Condition. Trakia Journal of Sciences. 1:5-13.

Tamkini, M., Abolfathi, A.A. and Shokravi, S. (2015). Photo biochemistry of photosynthetic pigments of edaphic cyanobacterium Anabaena sp. FS76, under the combination effect of irradiance and carbon dioxide concentrations. International Journal of Scientific and Engineering Research. 6(2): 386-394.

Tang, E.P. and Vincent, W.F. (1999). Strategies of thermal adaptation by high-latitude cyanobacteria. The New Phytologist, 142(2): 315-323.

Trimborn S., Brenneis T., Sweet E. and Rost, B. (2013). Sensitivityof Antarctic phytoplankton species to ocean acidification: growth, carbon acquisition, and species interaction. Limnology and Oceanography. 58:997–1007.

Valiente, E.F. and Leganes, L. (1998). Regulatory effect of pH and Incident Irradiance on the levels of Nitrogenase activity in the cyanobacterium Nostoc sp. UAM205. Journal of Plant Physiology. 135:623-627.

Vakili, F., Shokravi, Sh., Ghorchibeigi, K. and Soltani, N. (2005). Studying of growth and heterocycst variationsin Fischerella ambigua., Thesis of Plant Science (M.Sc), Islamic Azad University, Gorgan Branch.

Vierling, E.F. and Alberte, R.S. (1980). Functional organization and plasticity of the photosynthetic unit of the cyanobacterium Anacystis nidulans. Physiologia Plantarum. 50:93-98.

Wang, Y., Stessman D.J. and Spalding M.H. (2015). The CO2concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how works against the gradient. The Plant Journal 82, 429–448

Wang, X., Hao, C., Zhang, F., Feng, C. and Yang, Y. (2011). Inhibition of the growth of two blue-green algaespecies (Microsystis aruginosa and Anabaena spiroides) by acidification treatments using carbondioxide. Bioresource Technology. 102:5742-5748.

Wannicke, N., Endres, S., Engel, A., Grossart, H., Nausch, M., Unger, J. and Voss, M. (2012). Response of Nodularia spumigenato pCO2—Part 1: Growth, production and nitrogen cycling. Biogeosciences. 9:2973–2988.

Yamamaka, G. and Glazer, A.N. (1981). Dynamic aspects of phycobilisome structure: modulation of phycocyanin content of Synechococcus phycobilisomes. Archives of Microbiology. 130: 23-30.

Yamamoto, Y. and Nakahara, H. (2005). The formation and degradation of cyanobacterium Aphanizomenon flos-aquae blooms: The importance of pH, water temperature, and day length. Limnology. 6(1):1-6.

Yu, J.W., Price, G.D. and Badger, M.R. (1994) Characterization of CO2 and HCO3- uptake during steady-state photosynthesis in the cyanobacterium Synechococcus PCC7942. Australian Journal of Plant Physiology.21:185-195.